Factorial Within Subjects

Psy 420 Ainsworth

• • Factorial WS Designs

- Analysis
 - Factorial deviation and computational
- Power, relative efficiency and sample size
- Effect size
- Missing data
- Specific Comparisons

Example for DeviationApproach

	b ₁ : Science Fiction			b ₂ : Mystery			Case
	a ₁ : Month 1	a ₂ : Month 2	a ₃ : Month 3	a ₁ : Month 1	a ₂ : Month 2	a ₃ : Month 3	Means
S ₁	1	3	6	5	4	1	S ₁ = 3.333
S ₂	1	4	8	8	8	4	S ₂ = 5.500
S ₃	3	3	6	4	5	3	$S_3 = 4.000$
S ₄	5	5	7	3	2	0	S ₄ = 3.667
S ₅	2	4	5	5	6	3	S ₅ = 4.167
Treatment Means	$a_1b_1 = 2.4$	$a_2b_1 = 3.8$	a ₃ b ₁ = 6.4	a ₁ b ₂ = 5	a ₂ b ₂ = 5	$a_3b_2 = 2.2$	GM = 4.133

Analysis – Deviation

- What effects do we have?
 - A
 - B
 - AB
 - S
 - AS
 - BS
 - ABS
 - T

• • Analysis – Deviation

o DFs

- $DF_A = a 1$
- $DF_{B} = b 1$
- $DF_{AB} = (a 1)(b 1)$
- $DF_S = (s 1)$
- $DF_{AS} = (a 1)(s 1)$
- $DF_{BS} = (b-1)(s-1)$
- $DF_{ABS} = (a-1)(b-1)(s-1)$
- $DF_T = abs 1$

 Sums of Squares - Deviation
 The total variability can be partitioned into A, B, AB, Subjects and a Separate Error Variability for Each Effect

$$\begin{split} SS_{Total} &= SS_A + SS_B + SS_{AB} + SS_S + SS_{AS} + SS_{BS} + SS_{ABS} \\ &\sum \left(Y_{ijk} - \overline{Y}_{...}\right)^2 = \sum n_j \left(\overline{Y}_{.j.} - \overline{Y}_{...}\right)^2 + \sum n_k \left(\overline{Y}_{..k} - \overline{Y}_{...}\right)^2 + \\ &+ \left[\sum n_{jk} \left(\overline{Y}_{.jk} - \overline{Y}_{...}\right)^2 - \sum n_j \left(\overline{Y}_{.j.} - \overline{Y}_{...}\right)^2 - \sum n_k \left(\overline{Y}_{..k} - \overline{Y}_{...}\right)^2\right] \\ &+ jk \sum \left(\overline{Y}_{i...} - \overline{Y}_{...}\right)^2 + \left[k \sum \left(Y_{ij.} - \overline{Y}_{.j.}\right)^2 - jk \sum \left(\overline{Y}_{i...} - \overline{Y}_{...}\right)^2\right] + \\ &+ \left[j \sum \left(Y_{i.k} - \overline{Y}_{.j.}\right)^2 - jk \sum \left(\overline{Y}_{i...} - \overline{Y}_{...}\right)^2\right] + \\ &+ \left[\sum \left(Y_{ijk} - \overline{Y}_{.jk}\right)^2 - jk \sum \left(\overline{Y}_{i...} - \overline{Y}_{...}\right)^2 - k \sum \left(Y_{ij.} - \overline{Y}_{.j.}\right)^2 - j\sum \left(Y_{i.k} - \overline{Y}_{.j.}\right)^2\right] \end{split}$$

• • Analysis – Deviation

- Before we can calculate the sums of squares we need to rearrange the data
- When analyzing the effects of A (Month) you need to AVERAGE over the effects of B (Novel) and vice versa
- The data in its original form is only useful for calculating the AB and ABS interactions

• • For the A and AS effects

Remake data, averaging over B

	a₁: Month 1	a ₂ : Month 2	a ₃ : Month 3	Case Means
S ₁	3	3.5	3.5	S ₁ = 3.333
S ₂	4.5	6	6	$S_2 = 5.500$
S ₃	3.5	4	4.5	$S_3 = 4.000$
S ₄	4	3.5	3.5	$S_4 = 3.667$
S ₅	3.5	5	4	S ₅ = 4.167
Treatment Means	a ₁ = 3.7	a ₂ = 4.4	a ₃ = 4.3	GM = 4.133

$$SS_A = \sum n_j (\overline{Y}_{.j.} - \overline{Y}_{...})^2 = 10*[(3.7 - 4.133)^2 + (4.4 - 4.133)^2 + (4.3 - 4.133)^2] = 2.867$$

$$SS_S = jk \sum (\overline{Y}_{i..} - \overline{Y}_{...})^2 = (3*2)*[(3.333 - 4.133)^2 + (5.5 - 4.133)^2 + (4 - 4.133)^2 + (4.167 - 4.133)^2 + (4.167 - 4.133)^2 = 16.467$$

$$SS_{AS} = k \sum (Y_{ij.} - \overline{Y}_{.j.})^2 - jk \sum (\overline{Y}_{i..} - \overline{Y}_{...})^2 = k \sum (Y_{ij.} - \overline{Y}_{.j.})^2 = 2*[(3-3.7)^2 + (4.5-3.7)^2 + (3.5-3.7)^2 + (4-3.7)^2 + (3.5-4.4)^2 + (6-4.4)^2 + (4-4.4)^2 + (3.5-4.4)^2 + (5-4.4)^2 + (4-4.3$$

$$SS_{AS} = 20.6 - 16.467 = 4.133$$

• • For B and BS effects

o Remake data, averaging over A

	b₁: Science Fiction	b ₂ : Mystery	Case Means
S ₁	3.333	3.333	S ₁ = 3.333
S ₂	4.333	6.667	$S_2 = 5.500$
S_3	4.000	4.000	$S_3 = 4.000$
S ₄	5.667	1.667	$S_4 = 3.667$
S_5	3.667	4.667	S ₅ = 4.167
Treatment Means	b ₁ = 4.200	b ₂ = 4.067	GM = 4.133

$$SS_B = \sum n_k (\bar{Y}_{...k} - \bar{Y}_{...})^2 = 15*[(4.2 - 4.133)^2 + (4.067 - 4.133)^2] = .133$$

$$SS_{BS} = j \sum (Y_{i.k} - \overline{Y}_{..k})^2 - jk \sum (\overline{Y}_{i..} - \overline{Y}_{...})^2 =$$

$$j \sum (Y_{i.k} - \overline{Y}_{..k})^2 = 3*[(3.333 - 4.2)^2 + (4.333 - 4.2)^2 + (4-4.2)^2 +$$

$$+(5.667 - 4.2)^2 + (3.667 - 4.2)^2 + (3.333 - 4.067)^2 + (6.667 - 4.067)^2 +$$

$$+(4-4.067)^2 + (1.667 - 4.067)^2 + (4.667 - 4.067)^2] = 50$$

$$SS_S = jk \sum (\bar{Y}_{i..} - \bar{Y}_{...})^2 = 16.467$$

$$SS_{RS} = 50 - 16.467 = 33.533$$

• • For AB and ABS effects

Use the data in its original form

	b ₁ : Science Fiction			b₂: Mystery			Case
	a ₁ : Month 1	a ₂ : Month 2	a ₃ : Month 3	a ₁ : Month 1	a ₂ : Month 2	a ₃ : Month 3	Means
S ₁	1	3	6	5	4	1	S ₁ = 3.333
S ₂	1	4	8	8	8	4	S ₂ = 5.500
S ₃	3	3	6	4	5	3	$S_3 = 4.000$
S ₄	5	5	7	3	2	0	S ₄ = 3.667
S ₅	2	4	5	5	6	3	S ₅ = 4.167
Treatment Means	$a_1b_1 = 2.4$	$a_2b_1 = 3.8$	a ₃ b ₁ = 6.4	a ₁ b ₂ = 5	a ₂ b ₂ = 5	a ₃ b ₂ = 2.2	GM = 4.133

$$SS_{AB} = \sum n_{jk} \left(\overline{Y}_{.jk} - \overline{Y}_{...} \right)^2 - \sum n_j \left(\overline{Y}_{.j.} - \overline{Y}_{...} \right)^2 - \sum n_k \left(\overline{Y}_{..k} - \overline{Y}_{...} \right)^2 = \sum n_j \left(\overline{Y}_{.jk} - \overline{Y}_{...} \right)^2 - \sum n_j \left(\overline{Y}_{.jk} - \overline{Y}_{...$$

$$\sum n_{jk} \left(\overline{Y}_{.jk} - \overline{Y}_{...} \right)^2 = 5 * \left[(2.4 - 4.133)^2 + (3.8 - 4.133)^2 + (6.4 - 4.133)^2 + (5 - 4.133)^2 + (5 - 4.133)^2 + (2.2 - 4.133)^2 \right] = 67.467$$

$$\sum n_j (\bar{Y}_{.j.} - \bar{Y}_{...})^2 = SS_A = 2.867$$

$$\sum n_k \left(\overline{Y}_{..k} - \overline{Y}_{...} \right)^2 = SS_B = .133$$

$$SS_{AB} = 67.467 - 2.867 - .133 = 64.467$$

$$SS_{ABS} = \left\lceil \sum \left(Y_{ijk} - \overline{Y}_{.jk} \right)^2 - jk \sum \left(\overline{Y}_{i..} - \overline{Y}_{..} \right)^2 - k \sum \left(Y_{ij.} - \overline{Y}_{.j.} \right)^2 - j \sum \left(Y_{i.k} - \overline{Y}_{.j.} \right)^2 \right\rceil = \left\lceil \sum \left(Y_{ijk} - \overline{Y}_{.jk} \right)^2 - jk \sum \left(\overline{Y}_{i..} - \overline{Y}_{..} \right)^2 \right\rceil = \left\lceil \sum \left(Y_{ijk} - \overline{Y}_{..jk} \right)^2 - jk \sum \left(\overline{Y}_{i..} - \overline{Y}_{...} \right)^2 - jk \sum \left(\overline{Y}_{i..} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(Y_{ijk} - \overline{Y}_{...} \right)^2 - jk \sum \left(\overline{Y}_{i..} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 - jk \sum \left(\overline{Y}_{i..} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{...} \right)^2 \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{ijk} \right) \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{ijk} \right) \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{ijk} \right) \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{ijk} \right) \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{ijk} \right) \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{ijk} \right) \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{ijk} \right) \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{ijk} \right) \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{ijk} \right) \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{ijk} \right) \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{ijk} \right) \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{ijk} \right) \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{ijk} \right) \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{ijk} \right) \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{ijk} \right) \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{ijk} \right) \right\rceil = \left\lceil \sum \left(\overline{Y}_{ijk} - \overline{Y}_{ijk} \right) \right\rceil = \left\lceil \sum \left(\overline{Y}$$

$$\sum (Y_{ijk} - \overline{Y}_{.jk})^2 = (1 - 2.4)^2 + (1 - 2.4)^2 + (3 - 2.4)^2 + (5 - 2.4)^2 + (2 - 2.4)^2 + (3 - 3.8)^2 + (4 - 3.8)^2 + (4 - 3.8)^2 + (6 - 6.4)^2 +$$

$$SS_{ABS} = 64 - 16.467 - 20.6 - 50 = 9.867$$

$$SS_{Total} = (1-4.133)^{2} + (1-4.133)^{2} + (3-4.133)^{2} + (5-4.133)^{2} + (2-4.133)^{2} + (3-4.133)^{2} + (4-4.133)^{2} + (4-4.133)^{2} + (6-4.133)^{2} +$$

• • Analysis – Deviation

o DFs

•
$$DF_{\Delta} = a - 1 = 3 - 1 = 2$$

•
$$DF_B = b - 1 = 2 - 1 = 1$$

•
$$DF_{AB} = (a-1)(b-1) = 2 * 1 = 2$$

•
$$DF_S = (s-1) = 5-1 = 4$$

•
$$DF_{AS} = (a - 1)(s - 1) = 2 * 4 = 8$$

•
$$DF_{BS} = (b-1)(s-1) = 1 * 4 = 4$$

•
$$DF_{ABS} = (a-1)(b-1)(s-1) = 2 * 1 * 4 = 8$$

•
$$DF_T = abs - 1 = [3*(2)*(5)] - 1 = 30 - 1 = 29$$

• • Source Table - Deviation

Source	SS	df	MS	F
Α	2.867	2	1.433	2.774
AS	4.133	8	0.517	
В	0.133	1	0.133	0.016
BS	33.533	4	8.383	
AB	64.467	2	32.233	26.135
ABS	9.867	8	1.233	
S	16.467	4	4.117	
Total	131.467	29		

Analysis – Computational

Example data re-calculated with totals

	b₁: Science Fiction				Case		
	a₁: Month 1	a ₂ : Month 2	a ₃ : Month 3	a₁: Month 1	a ₂ : Month 2	a ₃ : Month 3	Totals
S ₁	1	3	6	5	4	1	S ₁ =20
S ₂	1	4	8	8	8	4	S ₂ =33
S ₃	3	3	6	4	5	3	S ₃ =24
S ₄	5	5	7	3	2	0	S ₄ =22
S ₅	2	4	5	5	6	3	S ₅ =25
Treatment Totals	$a_1b_1 = 12$	$a_2b_1 = 19$	$a_3b_1 = 32$	$a_1b_2 = 25$	$a_2b_2 = 25$	$a_3b_2 = 11$	T = 124

• • Analysis – Computational

- Before we can calculate the sums of squares we need to rearrange the data
- When analyzing the effects of A (Month) you need to SUM over the effects of B (Novel) and vice versa
- The data in its original form is only useful for calculating the AB and ABS interactions

Analysis – Computational

For the Effect of A (Month) and A x S

		Case		
	a ₁ : Month 1 a ₂ : Month 2 a ₃ : N		a ₃ : Month 3	Totals
S ₁	6	7	7	S ₁ =20
S ₂	9	12	12	S ₂ =33
S ₃	7	8	9	S ₃ =24
S ₄	8	7	7	S ₄ =22
S ₅	7	10	8	S ₅ =25
Treatment Totals	37	44	43	T = 124

$$SS_A = \frac{\sum \left(\sum a_j\right)^2}{bs} - \frac{T^2}{abs} = \frac{37^2 + 44^2 + 43^2}{2(5)} - \frac{124^2}{2(3)(5)} = SS_A = \frac{5154}{10} - \frac{15376}{30} = 515.4 - 512.533 = 2.867$$

$$SS_{S} = \frac{\sum \left(\sum s_{i}\right)^{2}}{ab} - \frac{T^{2}}{abs} = \frac{20^{2} + 33^{2} + 24^{2} + 22^{2} + 25^{2}}{2(3)} - 512.533 =$$

$$SS_{S} = \frac{3174}{6} - 512.533 = 529 - 512.533 = 16.467$$

$$SS_{AS} = \frac{\sum \left(\sum a_{j} s_{i}\right)^{2}}{b} - \frac{\sum \left(\sum a_{j}\right)^{2}}{bs} - \frac{\sum \left(\sum s_{i}\right)^{2}}{ab} + \frac{T^{2}}{abs} = SS_{AS} = \frac{6^{2} + 9^{2} + 7^{2} + 8^{2} + 7^{2} + 12^{2} + 8^{2} + 7^{2} + 10^{2} + 7^{2} + 12^{2} + 9^{2} + 7^{2} + 8^{2}}{2} - 515.4 - 529 + 512.533 = \frac{1072}{2} - 515.4 - 529 + 512.533 = 4.133$$

• • Analysis – Traditional

For B (Novel) and B x S

	Туре о	Case	
	b₁: Science Fiction	b ₂ : Mystery	Totals
S ₁	10	10	S ₁ =20
S ₂	13	20	S ₂ =33
S ₃	12	12	S ₃ =24
S ₄	17	5	S ₄ =22
S_5	11	14	S ₅ =25
Treatment Totals	63	61	T = 124

$$SS_B = \frac{\sum (\sum b_k)^2}{as} - \frac{T^2}{abs} = \frac{63^2 + 61^2}{3(5)} - 512.533 =$$

$$SS_B = \frac{7690}{15} - 512.533 = 512.667 - 512.533 = .133$$

$$SS_{BS} = \frac{\sum \left(\sum b_k s_i\right)^2}{a} - \frac{\sum \left(\sum b_k\right)^2}{as} - \frac{\sum \left(\sum s_i\right)^2}{ab} + \frac{T^2}{abs} = SS_{BS} = \frac{10^2 + 13^2 + 12^2 + 17^2 + 11^2 + 10^2 + 20^2 + 12^2 + 5^2 + 14^2}{3}$$

$$-512.667 - 529 + 512.533 =$$

$$SS_{BS} = \frac{1688}{3} - 512.667 - 529 + 512.533$$

$$SS_{BS} = 562.667 - 512.667 - 529 + 512.533 = 33.533$$

• • Analysis – Computational

Example data re-calculated with totals

	b₁: Science Fiction				Case		
	a ₁ : Month 1	a ₂ : Month 2	a ₃ : Month 3	a ₁ : Month 1	a ₂ : Month 2	a ₃ : Month 3	Totals
S ₁	1	3	6	5	4	1	S ₁ =20
S ₂	1	4	8	8	8	4	S ₂ =33
S ₃	3	3	6	4	5	3	S ₃ =24
S ₄	5	5	7	3	2	0	S ₄ =22
S ₅	2	4	5	5	6	3	S ₅ =25
Treatment Totals	$a_1b_1 = 12$	$a_2b_1 = 19$	$a_3b_1 = 32$	$a_1b_2 = 25$	$a_2b_2 = 25$	$a_3b_2 = 11$	T = 124

$$SS_{AB} = \frac{\sum \left(\sum a_j b_k\right)^2}{s} - \frac{\sum \left(\sum a_j\right)^2}{bs} - \frac{\sum \left(\sum b_k\right)^2}{as} + \frac{T^2}{abs} = SS_{AB} = \frac{12^2 + 19^2 + 32^2 + 25^2 + 25^2 + 11^2}{5} - 515.4 - 512.667 + 512.533 = SS_{AB} = \frac{2900}{5} - 515.4 - 512.667 + 512.533 = 64.467$$

$$SS_{ABS} = \sum Y^{2} - \frac{\sum (\sum a_{j}b_{k})^{2}}{s} - \frac{\sum (\sum a_{j}s_{i})^{2}}{b} - \frac{\sum (\sum b_{k}s_{i})^{2}}{a} + \frac{\sum (\sum a_{j})^{2}}{as} + \frac{\sum (\sum b_{k})^{2}}{ab} - \frac{T^{2}}{abs} = SS_{ABS} = 644 - 580 - 536 - 562.667 + 515.4 + 512.667 + 529 - 512.533 = 9.867$$

$$SS_{Total} = \sum Y^2 - \frac{T^2}{abs} = 644 - 512.533 = 131.467$$

Analysis – Computational DFs are the same

o DFs

- $DF_A = a 1 = 3 1 = 2$
- $DF_B = b 1 = 2 1 = 1$
- $DF_{AB} = (a-1)(b-1) = 2 * 1 = 2$
- $DF_S = (s-1) = 5-1 = 4$
- $DF_{AS} = (a 1)(s 1) = 2 * 4 = 8$
- $DF_{BS} = (b-1)(s-1) = 1 * 4 = 4$
- $DF_{ABS} = (a-1)(b-1)(s-1) = 2 * 1 * 4 = 8$
- $DF_T = abs 1 = [3*(2)*(5)] 1 = 30 1 = 29$

Source Table – Computational Is also the same

Source	SS	df	MS	F
Α	2.867	2	1.433	2.774
AS	4.133	8	0.517	
В	0.133	1	0.133	0.016
BS	33.533	4	8.383	
AB	64.467	2	32.233	26.135
ABS	9.867	8	1.233	
S	16.467	4	4.117	
Total	131.467	29		

• • Relative Efficiency

- One way of conceptualizing the power of a within subjects design is to calculate how efficient (uses less subjects) the design is compared to a between subjects design
- One way of increasing power is to minimize error, which is what WS designs do, compared to BG designs
- WS designs are more powerful, require less subjects, therefore are more efficient

• • Relative Efficiency

- Efficiency is not an absolute value in terms of how it's calculated
- In short, efficiency is a measure of how much smaller the WS error term is compared to the BG error term
- Remember that in a one-way WS design:
 SS_{AS}=SS_{S/A} SS_S

••• Relative Efficiency

Relative Efficiency =
$$\frac{MS_{S/A}}{MS_{AS}} \left(\frac{df_{AS} + 1}{df_{AS} + 3} \right) \left(\frac{df_{S/A} + 3}{df_{S/A} + 1} \right)$$

 MS_{S/A} can be found by either re-running the analysis as a BG design or for one-way:

$$SS_S + SS_{AS} = SS_{S/A}$$
 and $df_S + df_{AS} = df_{S/A}$

$$MS_{S/A} = \frac{(s-1)MS_S + (a-1)(s-1)MS_{AS}}{as-1}$$

• • Relative Efficiency

• From our one-way example:

Source	SS	df	MS	F
Α	41.20	2	20.60	17.35
S	9.70	4	2.43	2.04
AxS	9.50	8	1.19	
Total	60.40	14		

$$SS_{S/A} = SS_S + SS_{AS} = 9.7 + 9.5 = 19.2$$

 $df_{S/A} = df_S + df_{AS} = 4 + 8 = 12$
 $MS_{S/A} = 19.2/12 = 1.6$

• • Relative Efficiency

Relative Efficiency =
$$\frac{1.6}{1.2} \left(\frac{8+1}{8+3} \right) \left(\frac{12+3}{12+1} \right) = 1.26$$

- From the example, the within subjects design is roughly 26% more efficient than a between subjects design (controlling for degrees of freedom)
- For # of BG subjects (n) to match WS (s) efficiency:

$$n = s(\text{relative efficiency}) = 5(1.26) = 6.3 \approx 7$$

Power and Sample Size

- Estimating sample size is the same from before
- For a one-way within subjects you have and AS interaction but you only estimate sample size based on the main effect
- For factorial designs you need to estimate sample size based on each effect and use the largest estimate
- Realize that if it (PC-Size, formula) estimates 5 subjects, that total, not per cell as with BG designs

• • Effects Size

 Because of the risk of a true AS interaction we need to estimate lower and upper bound estimates

$$\eta^{2} = \eta_{L}^{2} = \frac{SS_{A}}{SS_{Total}} = \frac{SS_{A}}{SS_{A} + SS_{S} + SS_{AS}}$$

$$partial \quad \eta^{2} = \frac{SS_{A}}{SS_{A} + SS_{error}} = \frac{SS_{A}}{SS_{A} + SS_{AS}}$$

$$\hat{\sigma}_{L}^{2} = \frac{df_{A}(MS_{A} - MS_{AS})}{df_{A}(MS_{A} - MS_{AS}) + as(MS_{AS}) + s(MS_{S})}$$

$$partial \quad \hat{\sigma}^{2} = \frac{df_{A}(MS_{A} - MS_{AS})}{df_{A}(MS_{A} - MS_{AS}) + as(MS_{AS})}$$

Missing Values

- In repeated measures designs it is often the case that the subjects may not have scores at all levels (e.g. inadmissible score, dropout, etc.)
- The default in most programs is to delete the case if it doesn't have complete scores at all levels
- If you have a lot of data that's fine
- If you only have a limited cases...

Missing Values

• Estimating values for missing cases in WS designs (one method: takes mean of A_j, mean for the case and the grand mean)

$$Y_{ij}^{*} = \frac{sS_{i}^{'} + aA_{j}^{'} - T^{'}}{(a-1)(s-1)}$$

where:

 Y_{ij}^* = predicted score to replace missing score

s = number of cases

 $S_i^{'}$ = sum of known values for that case

a = number of levels of A

 A_{i} = sum of known values for A

T' = sum of all known values

• • Specific Comparisons

 F-tests for comparisons are exactly the same as for BG

$$F = \frac{n(\sum w_j \overline{Y}_j)^2 / \sum w_j^2}{MS_{error}}$$

- Except that MS_{error} is not just MS_{AS}, it is going to be different for every comparison
- It is recommended to just calculate this through SPSS